1. For systems with the potential energy function \(V(r) \) depending only on the distance \(r \), the wave function can be expressed as the product of the radial wave function \(R_{nl}(r) \) and the spherical harmonics \(Y_{lm}(\theta, \phi) \) where \(Y_{lm}(\theta, \phi) \) is the common eigenfunction of operators \(L^2 \) and \(L_z \) such that \(L^2 Y_{lm} = l(l+1) \hbar^2 Y_{lm} \) and \(L_z Y_{lm} = m \hbar Y_{lm} \). (a) Show that the radial wave equation is given by
\[
\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR_{nl}}{dr} \right) + \left(\frac{2m}{\hbar^2} [E - V(r)] - \frac{l(l+1)}{r^2} \right) R_{nl} = 0.
\]
(b) By making the substitution \(R_{nl} = u_{nl}(r)/r \), show that the radial wave function can be reduced to an effective one-dimensional Schrödinger equation
\[
d^2u_{nl}/dr^2 + (2m/\hbar^2)[E - V_{\text{eff}}]u_{nl} = 0 \quad \text{where} \quad V_{\text{eff}} = V(r) + l(l+1)\hbar^2/2mr^2.
\]
(c) For the case of the isotropic harmonic oscillator with \(V(r) = m\omega^2 r^2/2 \), the effective one-dimensional radial wave equation can be written as
\[
d^2u_{nl}/d\rho^2 + (C - \rho^2 - l(l+1)/\rho^2)u_{nl} = 0
\]
with the introduction of \(\rho = \theta r \), \(\alpha = (m\omega/\hbar)^{1/2} \), and \(C=2E/\hbar\omega \). By examining its asymptotic solutions at \(r \to 0 \) and \(r \to \infty \) respectively, show that \(u_{nl} \) can be written as \(u_{nl}(\rho) = \rho^{l+1} e^{-\rho^2/2} f(\rho) \) with \(f(\rho) \) satisfying the differential equation
\[
\rho(d^2f/d\rho^2) + 2(l+1-\rho^2)(df/d\rho) - (2l + 3 - C)pf = 0.
\]
(d) Making a change of variable \(\xi = \rho^2 \), show that the differential equation for \(f(\xi) \) is
\[
\xi(d^2f/d\xi^2) + (l + 3/2 - \xi)(df/d\xi) - (1/4)(2l + 3 - C)f = 0.
\]
This is in the form of the well-known differential equation \(xF'' + (b-x)F' - aF = 0 \) whose solution is the confluent hypergeometric series
\[
F(a,b,x) = \sum_{s=0}^\infty \frac{\Gamma(a+s)\Gamma(b) x^s}{\Gamma(a)\Gamma(b+s)\Gamma(s+1)} = 1 + \frac{ax}{b} + \frac{a(a+1)x^2}{b(b+1)2!} + \ldots.
\]
It can be seen that \(F \) behaves as \(e^x \) for large \(x \). Show that the requirement that \(u_{nl} \) must be normalizable leads to \(E = (n + 3/2)\hbar\omega \) where \(n = 2s + l \). Thus each energy state \(n \) is associated with several orbital angular momentum states \(l \) according to \(l = n-2s = n, n-2, \ldots, (l \text{ or } 0) \).

2. A general angular momentum operator \(\hat{J} \) can be defined by the commutation relations of its components: \([J_x,J_y]=i\hbar J_z\). (a) Show that \([\hat{J}^2,J_z]=0\). (b) Let the common eigenvector of \(\hat{J}^2 \) and \(J_z \) be \(|\lambda, m\rangle \) such that \(\hat{J}^2 |\lambda, m\rangle = \lambda \hbar^2 |\lambda, m\rangle \) and \(J_z |\lambda, m\rangle = m \hbar |\lambda, m\rangle \). Show that \(\lambda = j(j+1) \) and, for a given \(j, m=-j,-j+1,\ldots,j \). (c) Show that possible values of \(j \) are \(0, 1/2, 1, 3/2, \ldots \). (d) Obtain the matrices \(J_x, J_y, \) and \(J_z \) in the representation of common eigenvectors of \(\hat{J}^2 \) and \(J_z \) for \(j=3/2 \).
3. Consider a particle in a cylindrical box of radius a and length L. Show, using cylindrical coordinates, that the possible values of the energy are $E = \frac{\hbar^2}{2m}[(n\pi/L)^2 + (\epsilon_{m\nu}/a)^2]$ while the corresponding eigenfunctions are $\psi_{m\nu}(r) = NJ_{|m|}(\epsilon_{m\nu}r/a)e^{i\nu\pi/n\pi/L}$ with $m=0,\pm1,\pm2,\ldots$, $\nu=1,2,3\ldots$, and $\epsilon_{m\nu}$ being the νth root of the Bessel function of order $|m|$.

(Hints: $\nabla^2 = (1/r^2)\left\{\left(\partial/\partial r\right)[r^2(\partial/\partial r)] + (\partial^2/\partial \phi^2)\right\} + (\partial^2/\partial z^2)$ in the cylindrical coordinates; the Bessel function of order n satisfies the differential equation $d^2J_n/dr^2 + (1/r)(dJ_n/dr) + (1 - n^2/r^2)J_n = 0$.)

4. The Green’s function $G(r)$ for a free particle is defined as the solution to the equation $\left(\hbar^2/2m(\nabla^2 + k^2)\right)G(r) = \delta(r)$. (a) Using $G(\vec{r}) = (2\pi)^{-3/2}\int G(\vec{q})e^{i\vec{q}\cdot\vec{r}}d^3\vec{q}$ and $\delta(\vec{r}) = (2\pi)^{-3}\int e^{i\vec{q}\cdot\vec{r}}d^3\vec{q}$, show that $G(\vec{q}) = (2m/\hbar^2)(k^2 - \vec{q}^2)^{-1}$. (b) Determine $G(\vec{r})$.