1 Groups

Do any two problems from this section.

1. Classify up to isomorphism all groups of order 175.

2. Let H and N be subgroups of a group G with N normal. Prove that $NH = HN$ and that this set is a subgroup of G.

3. Do two parts to receive full credit.

 (a) Let G be the multiplicative group of all nonsingular 2×2 matrices with rational numbers. Show that $g = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ has order 4 and $h = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$ has order 3, but that gh has infinite order.

 (b) Show that the additive group $H = (\mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}$ contains nonzero elements a, b of infinite order such that $a + b$ is nonzero and has finite order.

4. Prove that every finitely generated subgroup of the additive group of rational numbers is cyclic.

2 Rings

Do two problems from this section. One problem should include either Problem 1 or 2 (but not both).

1. The following is a well known fact: if K is a commutative ring with identity and I is an ideal of K, then K/I is a field if and only if I is a maximal ideal of K. Answer all the parts to receive full credit.

 (a) Find all the maximal ideals of \mathbb{Z}. (You may use the fact that every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$.)

 (b) Determine whether the ideal $(3, x)$ is a maximal ideal in $\mathbb{Z}[x]$.

 (c) Determine whether the ideal (x) is a maximal ideal in $\mathbb{Z}[x]$.
2. Do all the parts to receive full credit.
 (a) Define prime ideal and maximal ideal in a commutative ring R with identity.
 (b) Let R and S be commutative rings with identities 1_R and 1_S, respectively, and let $f : R \to S$ be a ring homomorphism such that $f(1_R) = 1_S$. If P is a prime ideal of S show that $f^{-1}(P)$ is a prime ideal of R.
 (c) Let f be as in part (b). If M is a maximal ideal of S, is $f^{-1}(M)$ a maximal ideal of R? Prove that it is or give a counter example.

3. Let
 \[A = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + c = b + d, \ a, b, c, d \in \mathbb{Z} \right\}. \]
 It is easy to see that A is a subring of $M_2(\mathbb{Z})$ (the ring of 2×2 matrices with elements from \mathbb{Z}). Do the two parts to receive full credit.
 (a) Let R be the ring of 2×2 lower triangular matrices $\begin{bmatrix} m & 0 \\ n & p \end{bmatrix}$ with elements from \mathbb{Z}. Consider the map $f : R \to A$ defined by
 \[f \left(\begin{bmatrix} m & 0 \\ n & p \end{bmatrix} \right) = \begin{bmatrix} m - n & m - n - p \\ n & n + p \end{bmatrix}. \]
 Is f a homomorphism of rings? Justify the answer.
 (b) Are the rings R and A isomorphic? Explain.

4. Show that a proper ideal M in a commutative ring R is maximal if and only if for every $r \in R \setminus M$ there exists $x \in R$ such that $1 - rx \in M$.

3 Fields
Do any two problems from this section.

1. Prove that $\mathbb{Q}(\sqrt{3} + \sqrt{5}) = \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Describe the lattice of subgroups of $\text{Gal}(\mathbb{Q}(\sqrt{3}, \sqrt{5})/\mathbb{Q})$ and the lattice of subfields of $\mathbb{Q}(\sqrt{3}, \sqrt{5})$.

2. Do all the parts to receive full credit.
 (i) Show that $g = X^3 - 3X - 1$ is an irreducible polynomial over \mathbb{Q}.
 (ii) It is known that there is a simple extension field $\mathbb{Q}(u)$ of \mathbb{Q} such that u is a root of g and $[\mathbb{Q}(u) : \mathbb{Q}] = 3$. How is $\mathbb{Q}(u)$ defined? List the elements of a basis of $\mathbb{Q}(u)$ over \mathbb{Q}.
 (iii) Show that there exists a splitting extension K of g with $[K : \mathbb{Q}] \leq 6$.

3. Prove that one of 2, 3 or 6 is a square in the finite field \mathbb{F}_p for every prime p. Conclude that the polynomial
 \[x^6 - 11x^4 + 36x^2 - 36 = (x^2 - 2)(x^2 - 3)(x^2 - 6) \]
 has a root modulo p for every prime p but has no root in \mathbb{Z}.