This examination consists of two parts, A and B. Part A contains six problems of which you must select four to do. Part B contains three problems of which you must select two to do. Each problem in part A is worth 15 points and each problem in part B is worth 20 points. Only hand-in your solutions to four problems from part A and two from part B. Please do not turn-in more solutions since only the first four solutions from part A will be graded and only the first two solutions from part B will be graded.

Begin each problem on a new sheet of paper and be sure to label each page of your work with the problem number and your name.

In each question, if you appeal to a theorem within your solution, you must carefully state the entire theorem. All graphs, unless otherwise stated, should be understood to be finite and simple.
Problem A1: A tournament is a complete graph in which every edge has been given an orientation. Prove that every tournament has a directed Hamiltonian path.

Problem A2: Solve the recurrence

\[a_n = 5a_{n-1} - 6a_{n-2} \quad (\text{for } n \geq 2), \]

with initial conditions \(a_0 = 1 \) and \(a_1 = 1 \).

Problem A3: Suppose that \(G \) is a connected planar graph that can be drawn in the plane so that all faces have an even number of edges on their boundary. Prove that the vertices of \(G \) can be properly 2-colored.

Problem A4: All points of the plane that have integer coordinates are colored so that each such point receives one of the three colors: red, blue or green. Prove that there must be a rectangle whose four corner vertices are all of the same color.

Problem A5: Prove that if every chain and every antichain of a poset \(P \) is finite, then \(P \) is finite.

Problem A6: Let \(G \) be a graph in which any two odd cycles intersect.

a) Prove that \(G \) is 5-colorable.

b) Give an example to show that 4 colors do not suffice.
Problem B1:
 a) Find, with a proof, the number of edges in the extremal graph on 6 vertices without K_4 as a subgraph.
 b) Find, with a proof, the number of edges in the extremal graph on 6 vertices without C_4 as a subgraph.

Problem B2: Prove the given identity:
 a)
 \[
 \sum_{i=0}^{n} \binom{a}{i} \binom{b}{n-i} = \binom{a+b}{n}
 \]
 b)
 \[
 \sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}.
 \]

Problem B3: Prove or disprove: If G is a connected, simple graph that does not contain P_4 or C_3 as an induced subgraph, then G is a complete bipartite graph.