This examination consists of two parts, A and B. Part A contains six problems of which you must select four to do. Part B contains three problems of which you must select two to do. Each problem in part A is worth 15 points and each problem in part B is worth 20 points. Only hand-in your solutions to four problems from part A and two from part B. Please do not turn-in more solutions since only the first four solutions from part A will be graded and only the first two solutions from part B will be graded.

Begin each problem on a new sheet of paper and be sure to label each page of your work with the problem number and your name.

In each question, if you appeal to a theorem within your solution, you must carefully state the entire theorem. All graphs, unless otherwise stated, should be understood to be finite and simple.
PART A: (15 points each) Do any four.

Problem A1:

- **a)** Show that if \(G \) is a 2-connected graph containing a vertex that is adjacent to at least three vertices of degree 2, then \(G \) is not Hamiltonian.
- **b)** The subdivision graph \(S(G) \) of a graph \(G \) is the graph obtained from \(G \) by replacing each edge \(uv \) by a vertex \(w \) and edges \(uw \) and \(vw \). Determine, with a proof, all graphs \(G \) for which \(S(G) \) is Hamiltonian.

Problem A2: Recall that a set \(S \) of vertices of a graph \(G \) is independent if every two vertices of \(S \) are not adjacent in \(G \). The independence number, \(\beta(G) \), of a graph \(G \) is the maximum cardinality among independent sets of vertices of \(G \). Prove that a graph \(G \) is bipartite if and only if \(\beta(H) \geq \frac{|V(H)|}{2} \), for every subgraph \(H \) of \(G \).

Problem A3: A simple planar graph \(G(V, E) \) has only vertices of degree 3, 4, 5, and 6, with the same number of each type. Find the order \(|V| \) and the size \(|E| \) of \(G \).

Problem A4: All points of the plane that have integer coordinates are colored so that each such point receives one of the three colors: red, blue or green. Prove that there must be a rectangle whose four corner vertices are all of the same color.

Problem A5: Solve the recurrence relation

\[a_0 = 1 \quad \text{and} \quad a_n = 3 \sum_{i=0}^{n-1} a_i, \quad \text{for all } n \geq 1. \]

Problem A6: A function \(f : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \) is monotone if \(x < y \) implies \(f(x) \leq f(y) \). Determine the number of such monotone functions.
PART B: (20 points each) Do any two. Time: 1 hour and 20 minutes.

PROBLEM B1:
 a) Find, with a proof, the number of edges in the extremal graph on 6 vertices without K_4 as a subgraph.
 b) Find, with a proof, the number of edges in the extremal graph on 6 vertices without C_4 as a subgraph.

PROBLEM B2: Consider the poset (P, \leq) where P is the set of all subsets of $\{1, 2, 3, 4, 5, 6, 7\}$ with odd cardinality and \leq is the inclusion relation.
 a) Find the number of elements in P.
 b) Find all minimal and maximal elements of (P, \leq).
 c) Determine the length ℓ and the width w of (P, \leq).
 d) Give an example of a chain of cardinality ℓ and an antichain of cardinality w.

PROBLEM B3: The automorphism group $\text{Aut}(G)$ of the graph G shown below consists of four permutations.
 a) List all elements of $\text{Aut}(G)$ using cycle notation.
 b) Find the cycle index of the group $\text{Aut}(G)$.
 c) Find the number of different 3-colorings of the vertices of G.
 d) Find the number of different labelings $\ell(G)$ of the vertices of the graph G if the available labels are a, b, c, d, e, f.

\[G: \begin{array}{c}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array} \]