Multiple View Geometry in Computer Vision

Prasanna Sahoo
Department of Mathematics
University of Louisville
Camera Models
Lecture 9
In our last lecture, we model various types of cameras using a 3×4 matrix \mathbf{P}.

In this lecture, we will examine various pieces of this camera matrix \mathbf{P}.
Null space of a matrix

Let \(\mathbb{R}^n \) be the set of \(n \)-tuples \((x_1, x_2, ..., x_n)^T \) where \(x_1, x_2, ..., x_n \) are elements in \(\mathbb{R} \). Then \(\mathbb{R}^n \) is a vector space over \(\mathbb{R} \).

Given a matrix \(A \), by **null space** of \(A \), we mean the set

\[
N = \left\{ x \in \mathbb{R}^n \mid Ax = 0 \right\}.
\]

The null set \(N \) is a vector subspace of \(\mathbb{R}^n \).
General Projective Cameras

Recall that a camera is called a general projective camera if it can be represented by an arbitrary homogeneous 3×4 matrix \mathbf{P} of rank 3.

A general projective camera \mathbf{P} maps world points \mathbf{X} to image points \mathbf{x} according to $\mathbf{x} = \mathbf{P} \mathbf{X}$.
The 3×4 matrix P can be decomposed into blocks as

$$P = \begin{bmatrix} M & p_4 \end{bmatrix}$$

where M is a 3×3 matrix and p_4 is the 4^{th} column.
Camera Center

The right null space of P

Since the 3×4 matrix P has rank 3, it has a right null space. Suppose the right null space of P is generated by the 4-vector C. Then $PC = 0$.

We want to show that this 4-vector C is the camera center of the general projective camera P.
Consider the line containing C and any other point A in 3-space. Points on this line can be represented by the convex combinations of C and A, that is

$$X(\lambda) = \lambda A + (1 - \lambda) C$$

where $\lambda \in [0, 1]$. Since $PC = 0$, under the mapping $x = PX$ points on this line are projected to

$$x = PX(\lambda) = \lambda PA + (1 - \lambda) PC = \lambda PA.$$
• This last equation shows that all points on the line containing C and A are mapped to the same image point PA.

• This means that the line must be a ray through the camera center.

• Since for all choices of A the line $X(\lambda)$ is a ray through the camera center, therefore C is the homogeneous representation of the camera center.
Column Vectors

The vanishing points of the coordinates axes

Let P_i be the i^{th} column of the projective camera P for $i = 1, 2, 3, 4$ (see figure below).

$$P = \begin{pmatrix} P_1 & P_2 & P_3 & P_4 \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$
Let \((1, 0, 0, 0)^T\) be the point at infinity (or direction) along the \(x\)-axis in the world coordinates system (WCS). The image of the point \((1, 0, 0, 0)^T\) is given by

\[
\begin{pmatrix}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
= \begin{pmatrix}
p_{11} \\
p_{21}
\end{pmatrix}
= P_1.
\]

Hence \(P_1\) is the vanishing point of the \(x\)-axis of the world coordinates system.
Similarly, \(P_2 \) and \(P_3 \) are the vanishing points of the \(y \)-axis and \(z \)-axis of the world coordinates system.
Row Vectors

The principal plane and coordinates axis planes

Let P_i^T be the i^{th} row vector of the projective camera P for $i = 1, 2, 3$. That is

$$P = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{pmatrix} = \begin{pmatrix} P_1^T \\ P_2^T \\ P_3^T \end{pmatrix}.$$
Principal Plane

The principal plane consists of a set of points \mathbf{X} whose images are at the line of infinity of the image plane.

Therefore

$$\mathbf{P} \mathbf{X} = (x, y, 0)^T \iff \mathbf{P}^3^\top \mathbf{X} = 0.$$
The equation $\mathbf{P}^3 \mathbf{T} \mathbf{X} = 0$ is an equation of a plane, and it implies that \mathbf{P}^3 is a 4-vector representing the principal plane.

If \mathbf{C} is the camera center, then $\mathbf{P} \mathbf{C} = 0$. Therefore, in particular $\mathbf{P}^3 \mathbf{T} \mathbf{C} = 0$, and hence \mathbf{C} lies on the principal plane \mathbf{P}^3.

Plane defined by the third row P^3T of the projection matrix
Axis Planes

The 4-vector P^1 represents a plane. If X is a point in the plane P^1, then $P^1^T X = 0$. Hence

$$PX = \begin{pmatrix} P^1^T \\ P^2^T \\ P^3^T \end{pmatrix} \begin{pmatrix} X \end{pmatrix} = \begin{pmatrix} 0 \\ y \\ w \end{pmatrix},$$

where $y = P^2^T X$ and $w = P^3^T X$.
If C is the camera center, then we have $PC = 0$. Hence in particular $P^1^T C = 0$. Therefore C lies on the plane P^1.

- The points X of the plane P^1 are mapped on to the y-axis of the image plane by the projection map P. Further, C lies on the plane P^1. Hence the plane P^1 must be the y-axis plane.
Plane defined by the first row P^1_T
of the projection matrix

The plane P^1 is the y-axis plane.
Following a similar argument, one can show that the plane \mathbb{P}^2 must be the x-axis plane.
Plane defined by the second row p^{2T} of the projection matrix

The plane P^2 is the x-axis plane.
Unlike the principal plane P^3, the axis planes P^1 and P^2 are dependent on the image x- and y-axes.

Shifting image origin shifts the x, y axis planes!
Since the camera center C lies on all three planes, and since these planes are distinct (as the P has rank 3) it must lie on their intersection.
Planes defined by the rows of the projection matrix
Principal Point

- The point where the principal axis meets the image plane is called the principal point.
The row 4-vector $\mathbf{P}^3 = (p_{31}, p_{32}, p_{33}, p_{34})^T$ represents the principal plane. The vector $(p_{31}, p_{32}, p_{33})^T$ is the normal to the principal plane \mathbf{P}^3.

The 4-vector $\hat{\mathbf{p}}^3 = (p_{31}, p_{32}, p_{33}, 0)^T$ is a point at the infinity along the direction of this normal vector.

The principal point x_0 can be obtained by projecting the point at infinity $(p_{31}, p_{32}, p_{33}, 0)^T$ using the central projection mapping \mathbf{P}.
That is, the principal point x_0 can be computed as

$$x_0 = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{pmatrix} \begin{pmatrix} p_{31} \\ p_{32} \\ p_{33} \\ 0 \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix} \begin{pmatrix} p_{31} \\ p_{32} \\ p_{33} \end{pmatrix}$$

$$= M m^3,$$

where M is the left hand 3×3 submatrix of P and m^3^T is the third row of M.

27
The submatrix M of P

M is the left hand 3×3 submatrix of P and m^{3T} is the third row of M
Computation of Principal Point

\[\hat{p}^3 = (p_{31}, p_{32}, p_{33}, 0) \]

\[x_0 = P \hat{p}^3 = M m^3 \]

Principal point \(x_0 \) is the image of the point at infinity along \(z \)-axis.
The principal axis vector

The vector defining the front side of camera

• \(\mathbf{v} = \text{det}(\mathbf{M}) \mathbf{m}^3 \) is a vector in the direction of the principal axis and directed towards the front of the camera.

\[
\mathbf{v} = \text{det}(\mathbf{M}) \mathbf{m}^3 = (0, 0, 1)^T
\]
Action of a projective camera on points

Forward Projection: A general projective camera maps a point X in space to an image point x according to the rule $x = PX$. The points at infinity $D = (d^T, 0)^T$ map to

$$x = PD = [M | p_4]D = Md$$

and thus are only affected by M.
Back-projection: Given an image point x we want to determine the set of points that map to x.

This set is a ray in space that passes through the camera center.
Consider two points \(C \) and \(P^+x \), where \(P^+ \) is the pseudo-inverse of \(P \).

\(P^+ \) is pseudo-inverse of \(P \) means \(P^+ = P^T (PP^T)^{-1} \).

Thus the ray is the line formed by joining these two points

\[X(\lambda) = P^+x + \lambda C. \]
Camera Depth

Given a point X_0 on the world space and the camera matrix P, we want to find the camera depth z_0.
Let

\[X_0 = (x_w, y_w, z_w, t_w)^T \]

be a point on the world space, and

\[PX_0 = x_0 = (x_c, y_c, 1)^T w_c. \]

Then the signed depth \(z_0 \) is given by

\[z_0 = \frac{w_c \text{ sign}(\det M)}{t_w \|m^3\|}. \]
END